Challenges for Providing Processing Integrity in Grid Computing

Felipe Martins¹, Márcio Maia¹, Rossana M. de C. Andrade² Aldri L. dos Santos², José Neuman de Souza^{1,2}

¹ Teleinformatics Engineering Department - Federal University of Ceará ² Computer Science Department – Federal University of Ceará

{felipe,marcio}@cenapadne.br,
{rossana,aldri,neuman}@lia.ufc.br

Schedule

- Computational Grids
- Grid Security Attacks
- Classification of Misbehavior Faults
- Treatment of Malicious Faults
- System-Level Diagnosis
- Diagnosis Applied to Grids
- Grid Simulators
- Case Study
- Final Remarks

Computational Grids

- Gathering, selection and sharing of distributed resources
 - Heterogeneity
 - Geographic dispersion
 - Transparent access to the resources
- More complex security requirements
- Grids are more susceptible to security attacks
 - User and servers masquerading
 - Abusive usage of the resources
 - Non-authorized access to the services
 - Subversion of the resources

Attacks against Grids

- Threats to the dependability
 - ◆ DoS (Denial-of-Service)
 - Defense → access control
 - Inefficient against internal attacks
 - DoS or DDoS (Distributed DoS) used into the grid itself or against another grid site
 - Defense → limitation of the resources usage

Attacks against Grids

- ■Threats to the *privacy*
 - User masquerading or eavesdropping
 - Searching for temporary files
 - ◆ Defense → cryptographic keys and SSL tunnel

Attacks against Integrity in Grids

- Protecting the Resources
 - ◆To ensure the environment is not "contaminated" with malicious codes
 - To encourage a greater participation and availability
 - ♦Viruses, worms, trojans
 - ◆Defense → virtualization

- Protecting the Applications
 - To ensure the environment is not "contaminated" with malicious hosts
 - Applications endangered by incorrect results
 - Non-trivial task
 - Data Transmission
 - Job Processing

Classification of Misbehavior Faults

- Inactive nodes
 - Do not cooperate to the network
 - Avoid forwarding packets
 - Refuse to process the jobs
 - Omit information about available resources
- Selfish nodes
 - Neglect help to other nodes
 - OurGrid
 - Free-rider
 - Consume resources from the grid without providing its own resources once requested
- Malicious nodes
 - Subvert the grid resources
 - Provide an invalid result
 - Spread viruses and worms

Treatment of Malicious Faults

- Fault Tolerance Common Techniques
 - Majority Voting
 - Jobs replicas are distributed among the nodes
 - Majority of results matching is taken as valid
 - Spot-Checking
 - Test jobs whose results are previously known
 - Blacklist

Treatment of Malicious Faults

Reputation

- ◆ Nodes with good reputation → better resource providers
 - Nodes do not need to be tested so frequently
 - It reduces the processing overhead
- Highly used in P2P systems
 - File sharing
 - Minimize the presence of peers interested in diffusing false or incomplete files, and also viruses and worms

System-Level Diagnosis

- Strategy of fault tolerance
- Sequence of tests
 - Which units are faulty and which are fully functional
 - Syndrome = set of obtained results
- Diagnosis Models
 - ♦ PMC, ADSD, Hi-ADSD
 - Comparison-based
 - MM, Broadcast, and others

Diagnosis Applied to Grids

- Defense against manipulation attacks
 - Considers the heterogeneous and dynamic nature of such environments
 - Public and private grids
- Proposed Solution
 - Diagnosis combined to spot checking and reputation
- Remarks
 - Tests Format
 - Different non-faulty nodes (non-malicious) may provide different results to a same task
 - Time to answer a test
 - Round test time is limited
 - Nodes with different processing capacities lead to different response times
 - Highly dispersed (intercontinental grid)

Grid Simulators

OptorSim, GridNet, MicroGrid, SimGrid and GridSim

Feature	OptorSim	GridNet	MicroGrid	SimGrid	GridSim
Using	Simulator	Simulator	Emulator	Simulator	Simulator
Language	Java	C++	С	С	Java
Manual	Good	Poor	Good	Very Good	Very Good
Portability	Yes	No	No	No	Yes
Extensibility	Good	High	Low	Regular	Good
Engine	Multithreads	Serial	Parallel	Serial	Multithreads

Case Study

- Simulations
 - GridSim 3.3
 - New introduced methods
 - Without reputation scheme
- Scenarios
 - ♦ 10.000 jobs
 - 200 worker nodes
 - Percentage of malicious nodes
 - 1/6, 1/3 and 2/3 of the grid nodes providing bad results
 - Amount of test rounds

• 3, 5, 8, 10, 15 and 20

Case Study

- Metrics
 - Amount of necessary test rounds
 - Overhead
 - Impact of the blacklist
- Not all jobs are corrupted by the malicious nodes
 - Probability of 25% chances of returning an invalid result
- Node with more than 3% of errors ⇒ blacklist
- Each experiment, 100 simulation runs

Test Jobs

- Factoring of a string randomly generated
- ASCII code of each character is multiplied by an element from a finite set of prime numbers
- Result is the sum of all factors multiplication
- Example
 - ◆ String "abcde"
 - ◆ Set of primes {3,5,7,11}
 - Result: 97 x 3 + 98 x 5 + 99 x 7 + 100 x 11 + 101 x 3 = **2877**

Detected Malicious Nodes

- Practically all malicious nodes are detected with 15 test rounds
- More that 20 rounds the benefit is insignificant

Detected Malicious Nodes

- 15 test rounds offer an effectiveness similar to 20 test rounds
- Scheme is unstable with just 3 rounds
 - ◆ In the best case, 26 detected nodes
 - In the worst, only 12 detected nodes

Detected Malicious Nodes

- Spot-checking and blacklist are inefficient with just 3 rounds
- Better results after 8 rounds
- The worst case percentage rises as the number of malicious nodes increases
- The higher the number of test rounds and malicious nodes, lower the variance

Malicious Nodes	3 Rounds		8 Rounds		15 Rounds	
	Worst Case	Best Case	Worst Case	Best Case	Worst Case	Best Case
1/6 (33 nodes)	37 %	79 %	75 %	100 %	87 %	100 %
1/3 (66 nodes)	42,5 %	73 %	80 %	98,5 %	92,5 %	100 %
2/3 (133 nodes)	51 %	67 %	83,5 %	94,5 %	95,5 %	100 %

Overhead

- 15 test rounds
 - High overhead
 - From 10.000 jobs, over 2.500 are just for test
- 8 test rounds
 - Acceptable trade-off
 - With 1/6 of malicious nodes, 30 from 33 were detected
- Reputation can reduce even more overhead

Blacklist

- Without blacklist
 - Number of manipulated results remains the same
 - Double the number of malicious nodes, double the manipulated results

With blacklist

- Manipulated results decrease with more test rounds
- Less efficiency with a higher number of malicious nodes
- Example: Manipulated results with 5 test rounds

Final Remarks

- Nowadays, no existing grid platform presents security mechanisms for processing integrity
- Presence of malicious nodes can be detected and minimized with fault tolerance techniques
- A reputation scheme with blacklist can increase security in the environment

Final Remarks

- A possible and efficient scalable approach
 - Apply these concepts in a diagnosis model
 - Even with different quota of malicious nodes, practically all can be detected and isolated
- Future work
 - A further study to use a reputation scheme
 - Scrutinize other possible metrics and scenarios
 - Treat other kinds of misbehavior nodes
 - Investigate the usage of this solution in real grids
 - OurGrid and Globus

Questions?

Felipe Sampaio Martins felipe@cenapadne.br

